extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×He3).1C22 = He3⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).1C2^2 | 432,78 |
(C4×He3).2C22 = He3⋊2D8 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6+ | (C4xHe3).2C2^2 | 432,79 |
(C4×He3).3C22 = He3⋊2Q16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 144 | 6- | (C4xHe3).3C2^2 | 432,80 |
(C4×He3).4C22 = He3⋊3D8 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12+ | (C4xHe3).4C2^2 | 432,83 |
(C4×He3).5C22 = He3⋊4SD16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12- | (C4xHe3).5C2^2 | 432,84 |
(C4×He3).6C22 = He3⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12+ | (C4xHe3).6C2^2 | 432,85 |
(C4×He3).7C22 = He3⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 144 | 12- | (C4xHe3).7C2^2 | 432,86 |
(C4×He3).8C22 = He3⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12- | (C4xHe3).8C2^2 | 432,152 |
(C4×He3).9C22 = He3⋊6D8 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12+ | (C4xHe3).9C2^2 | 432,153 |
(C4×He3).10C22 = He3⋊6Q16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 144 | 12- | (C4xHe3).10C2^2 | 432,160 |
(C4×He3).11C22 = He3⋊10SD16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12+ | (C4xHe3).11C2^2 | 432,161 |
(C4×He3).12C22 = He3⋊7D8 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).12C2^2 | 432,192 |
(C4×He3).13C22 = He3⋊9SD16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).13C2^2 | 432,193 |
(C4×He3).14C22 = He3⋊11SD16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).14C2^2 | 432,196 |
(C4×He3).15C22 = He3⋊7Q16 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 144 | 6 | (C4xHe3).15C2^2 | 432,197 |
(C4×He3).16C22 = C3⋊S3⋊Dic6 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12- | (C4xHe3).16C2^2 | 432,294 |
(C4×He3).17C22 = C12⋊S3⋊S3 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12+ | (C4xHe3).17C2^2 | 432,295 |
(C4×He3).18C22 = C12.84S32 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).18C2^2 | 432,296 |
(C4×He3).19C22 = C12.85S32 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6- | (C4xHe3).19C2^2 | 432,298 |
(C4×He3).20C22 = C12.S32 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12- | (C4xHe3).20C2^2 | 432,299 |
(C4×He3).21C22 = C62.13D6 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12- | (C4xHe3).21C2^2 | 432,361 |
(C4×He3).22C22 = Q8×C32⋊C6 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12- | (C4xHe3).22C2^2 | 432,368 |
(C4×He3).23C22 = (Q8×He3)⋊C2 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 12+ | (C4xHe3).23C2^2 | 432,369 |
(C4×He3).24C22 = C62.16D6 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).24C2^2 | 432,391 |
(C4×He3).25C22 = Q8×He3⋊C2 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).25C2^2 | 432,394 |
(C4×He3).26C22 = He3⋊5D4⋊C2 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).26C2^2 | 432,395 |
(C4×He3).27C22 = C32⋊C6⋊C8 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).27C2^2 | 432,76 |
(C4×He3).28C22 = He3⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).28C2^2 | 432,77 |
(C4×He3).29C22 = C12.89S32 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).29C2^2 | 432,81 |
(C4×He3).30C22 = He3⋊3M4(2) | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).30C2^2 | 432,82 |
(C4×He3).31C22 = C12.91S32 | φ: C22/C1 → C22 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).31C2^2 | 432,297 |
(C4×He3).32C22 = He3⋊4Q16 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 144 | 6- | (C4xHe3).32C2^2 | 432,114 |
(C4×He3).33C22 = He3⋊6SD16 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).33C2^2 | 432,117 |
(C4×He3).34C22 = He3⋊4D8 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6+ | (C4xHe3).34C2^2 | 432,118 |
(C4×He3).35C22 = He3⋊7SD16 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).35C2^2 | 432,175 |
(C4×He3).36C22 = He3⋊5D8 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).36C2^2 | 432,176 |
(C4×He3).37C22 = He3⋊5Q16 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 144 | 6 | (C4xHe3).37C2^2 | 432,177 |
(C4×He3).38C22 = C2×He3⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 144 | | (C4xHe3).38C2^2 | 432,348 |
(C4×He3).39C22 = C2×He3⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 144 | | (C4xHe3).39C2^2 | 432,384 |
(C4×He3).40C22 = C62.47D6 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).40C2^2 | 432,387 |
(C4×He3).41C22 = C8×C32⋊C6 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).41C2^2 | 432,115 |
(C4×He3).42C22 = He3⋊5M4(2) | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).42C2^2 | 432,116 |
(C4×He3).43C22 = C2×He3⋊3C8 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 144 | | (C4xHe3).43C2^2 | 432,136 |
(C4×He3).44C22 = He3⋊7M4(2) | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).44C2^2 | 432,137 |
(C4×He3).45C22 = C8×He3⋊C2 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 3 | (C4xHe3).45C2^2 | 432,173 |
(C4×He3).46C22 = He3⋊6M4(2) | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).46C2^2 | 432,174 |
(C4×He3).47C22 = C2×He3⋊4C8 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 144 | | (C4xHe3).47C2^2 | 432,184 |
(C4×He3).48C22 = He3⋊8M4(2) | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).48C2^2 | 432,185 |
(C4×He3).49C22 = C62.36D6 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).49C2^2 | 432,351 |
(C4×He3).50C22 = D8×He3 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).50C2^2 | 432,216 |
(C4×He3).51C22 = SD16×He3 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 72 | 6 | (C4xHe3).51C2^2 | 432,219 |
(C4×He3).52C22 = Q16×He3 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 144 | 6 | (C4xHe3).52C2^2 | 432,222 |
(C4×He3).53C22 = C2×Q8×He3 | φ: C22/C2 → C2 ⊆ Out C4×He3 | 144 | | (C4xHe3).53C2^2 | 432,407 |
(C4×He3).54C22 = C2×C8×He3 | φ: trivial image | 144 | | (C4xHe3).54C2^2 | 432,210 |
(C4×He3).55C22 = M4(2)×He3 | φ: trivial image | 72 | 6 | (C4xHe3).55C2^2 | 432,213 |
(C4×He3).56C22 = C4○D4×He3 | φ: trivial image | 72 | 6 | (C4xHe3).56C2^2 | 432,410 |